
A very informal introduction to Git

Federico Galatolo

Federico Galatolo A very informal introduction to Git 1 / 32



What is not git?

Dropbox

Google Drive

iCloud

...

Federico Galatolo A very informal introduction to Git 2 / 32



What is git?

Git is VCS (Version Control System).

VCS are about the changes not the files

Federico Galatolo A very informal introduction to Git 3 / 32



Git is more than a VCS

Git is a distributed VCS.

Each participant can have a different view of the state of the project.

Federico Galatolo A very informal introduction to Git 4 / 32



Repository

A Repository (or “repo”) is a data structure containing all project’s files
and history.

You can clone a remote repo with the clone command:

git clone <repo url>

Federico Galatolo A very informal introduction to Git 5 / 32



Special files

In a repo you can notice some files starting with .git

Those are special files and folders used to store the project history and to
instruct git.

.git A folder containing the project history (do not touch!)

.gitignore A file containing ignoring rules

.gitmodules A file containing submodules information

Federico Galatolo A very informal introduction to Git 6 / 32



Commit

C1 C2 C3 C4

A commit is a snapshot of the project in a given time.

Commits are immutable and represent a transition from a state to
another.

The commits are atomic units of modification within a project.

A commit is uniquely identified by its hash

Federico Galatolo A very informal introduction to Git 7 / 32



How to commit

A git commit is a two-stages process.

Add files to the staging environment

Commit the changes

F1*

F2*

F4*

F3

Staging

F4*

F2*

Commit

Federico Galatolo A very informal introduction to Git 8 / 32



How to commit

A git commit is a two-stages process.

Add files to the staging environment

Commit the changes

F1*

F2*

F4*

F3

Staging

F4*

F2*

Commit

Federico Galatolo A very informal introduction to Git 8 / 32



How to commit

A git commit is a two-stages process.

Add files to the staging environment

Commit the changes

F1*

F2*

F4*

F3

Staging

F4*

F2*

Commit

Federico Galatolo A very informal introduction to Git 8 / 32



How to commit

A git commit is a two-stages process.

Add files to the staging environment

Commit the changes

F1*

F2*

F4*

F3

Staging

F4*

F2*

Commit

Federico Galatolo A very informal introduction to Git 8 / 32



How to commit(2)

Check modified files

git status

Check commits history

git log

Add files to the staging environment

git add file/folder

Commit the changes

git commit -m "commit message"

C1 C2

C3 C4

Federico Galatolo A very informal introduction to Git 9 / 32



How to commit(2)

Check modified files

git status

Check commits history

git log

Add files to the staging environment

git add file/folder

Commit the changes

git commit -m "commit message"

C1 C2 C3

C4

Federico Galatolo A very informal introduction to Git 9 / 32



How to commit(2)

Check modified files

git status

Check commits history

git log

Add files to the staging environment

git add file/folder

Commit the changes

git commit -m "commit message"

C1 C2 C3 C4

Federico Galatolo A very informal introduction to Git 9 / 32



HEAD

C1 C2

HEAD

C3 C4

HEAD is a git variable that points to the most recent commit.

Federico Galatolo A very informal introduction to Git 10 / 32



HEAD

C1 C2 C3

HEAD

C4

HEAD is a git variable that points to the most recent commit.

Federico Galatolo A very informal introduction to Git 10 / 32



HEAD

C1 C2 C3 C4

HEAD

HEAD is a git variable that points to the most recent commit.

Federico Galatolo A very informal introduction to Git 10 / 32



Git superpowers

Your main git superpower is:

git reset <NEW HEAD>

With this command you can change HEAD and make it point to a different
commit.

Change HEAD without changing the files

git reset <NEW HEAD>

Change HEAD changing the files

git reset --hard <NEW HEAD>

Federico Galatolo A very informal introduction to Git 11 / 32



Git superpowers(2)

For example with:

git reset --hard C2

C1 C2 C3 C4

HEAD

Federico Galatolo A very informal introduction to Git 12 / 32



Git superpowers(2)

For example with:

git reset --hard C2

C1 C2 C3 C4

HEAD

Federico Galatolo A very informal introduction to Git 12 / 32



Git superpowers(3)

Don’t worry, you are not going to mess it up.

If you git reset you will lose in git log all the subsequent commit
references.

You can retrieve all HEAD history with

git reflog

Federico Galatolo A very informal introduction to Git 13 / 32



Learn Git Branching

We are going to use a tool called Learn Git Branching for the next slides.
This tool allow you to visualize git commands in a graph.
It uses a very simplified subset of git commands:

git commit

There is no concept of staging environment nor of files
You can make a commit without message

git reset <hash>

It uses C1, C2, ... CN as hashes
It always implies the --hard behavior

git clone

Treats the repo as it has just been cloned from an identical origin

git fakeTeamwork

Creates a new commit in remote origin

Federico Galatolo A very informal introduction to Git 14 / 32



Try it yourself!(1)

Exercise 1

Federico Galatolo A very informal introduction to Git 15 / 32

https://learngitbranching.js.org/?NODEMO&command=git%20commit;git%20commit


Branches

C1 C2 C3 C4

master

A branch is a (semantically significant) collection of commits.

As a commit represent an atomic unit of modification,
a branch represent a continuous flow of modifications.

A commit is always in a branch.

Federico Galatolo A very informal introduction to Git 16 / 32



Branches(2)

git branch

Show all the existing branches and the active one (denoted with an
asterisk)

git branch <branch>

Create a new branch called <branch>

git checkout <branch>

Switch working on the branch <branch>

git checkout -b <branch>

Create <branch> and switch working on it

Federico Galatolo A very informal introduction to Git 17 / 32



Try it yourself!(2)

Exercise 2

Federico Galatolo A very informal introduction to Git 18 / 32

https://learngitbranching.js.org/?NODEMO


Merge(1)

You can merge different branches (or even single commits).
Most of the times commits has been pushed in both branches.
Don’t panic!

C1 C2 C3

master

feature

C4 C5

C6 C7

Federico Galatolo A very informal introduction to Git 19 / 32



Merge(1)

You can merge different branches (or even single commits).
Most of the times commits has been pushed in both branches.
Don’t panic!

C1 C2 C3

master

feature

C4

C5

C6 C7

Federico Galatolo A very informal introduction to Git 19 / 32



Merge(1)

You can merge different branches (or even single commits).
Most of the times commits has been pushed in both branches.
Don’t panic!

C1 C2 C3

master

feature

C4 C5

C6 C7

Federico Galatolo A very informal introduction to Git 19 / 32



Merge(1)

You can merge different branches (or even single commits).
Most of the times commits has been pushed in both branches.
Don’t panic!

C1 C2 C3

master

feature

C4 C5

C6

C7

Federico Galatolo A very informal introduction to Git 19 / 32



Merge(1)

You can merge different branches (or even single commits).
Most of the times commits has been pushed in both branches.
Don’t panic!

C1 C2 C3

master

feature

C4 C5

C6 C7

Federico Galatolo A very informal introduction to Git 19 / 32



Merge(2)

Don’t worry, git auto-merge is smart.

If the commits changed different files the merge is without conflicts.

If the commits changed different sections of the same files the merge is
without conflicts.

If the commits changed the same sections of the same files (at least
once) the commit is with conflict

git merge <branch>

Merges <branch> in the active branch

git merge --abort

Abort the merge and restore everything as it was before git merge

Federico Galatolo A very informal introduction to Git 20 / 32



Try it yourself!(3)

Exercise 3

Federico Galatolo A very informal introduction to Git 21 / 32

https://learngitbranching.js.org/?NODEMO&command=git%20commit;git%20checkout%20-b%20feature;git%20commit;git%20commit;git%20checkout%20master;git%20commit;git%20checkout%20feature


Merge(3)

Handling conflicts is pretty easy.
When a conflict is detected git puts in the place of the conflict:

Some non-conflicting text

<<<<<<< HEAD

CONFLICTING PORTION COMING FROM HEAD

=======

CONFLICTING PORTION COMING FROM bugfix

>>>>>>> bugfix

Some other non-conflicting text

Is then up to you keep the portions that you want and then git add and
git commit the changes

Federico Galatolo A very informal introduction to Git 22 / 32



Remotes

Git is distributed.

A remote is a reference to a remote instance of the repository.
The default remote is called origin.
If you clone a repository then origin points to the cloned repo.

git fetch <remote> <branch>

Fetch the commits from branch <branch> of <remote> in the local
branch <remote>/<branch>

git pull <remote> <branch>

Fetch the commits from branch <branch> of <remote> and merge
them in the local <branch>

git push <remote> <branch>

Push the state of the local branch to the origin branch branch

Federico Galatolo A very informal introduction to Git 23 / 32



Try it yourself!(4)

Exercise 4

you can not use git pull

Federico Galatolo A very informal introduction to Git 24 / 32

https://learngitbranching.js.org/?NODEMO&command=git%20commit;git%20checkout%20-b%20feature;git%20clone;git%20fakeTeamwork%20feature;git%20fakeTeamwork%20feature;git%20checkout%20master;git%20commit


Demo time

Lets see some examples in the real world!

Federico Galatolo A very informal introduction to Git 25 / 32



Git tags

Tags are a way to point specific points in time (commits) that represent
milestones.

git tag <tag> <commit>

Tags <commit> with the tag <tag>

The default commit is HEAD

git checkout <tag>

Check out the tag <tag>

git push <remote> <tag>

Push the (newly created) tag <tag> to the remote <remote>

git push <remote> --tags

Push all the (newly created) tags to the remote <remote>

Federico Galatolo A very informal introduction to Git 26 / 32



Cherry picking

Cherry picking is the action of merging into HEAD some cherry-picked
commits.

git cherry-pick <commit>

Applies the changes from commit <commit> to HEAD

Federico Galatolo A very informal introduction to Git 27 / 32



A successful Git branching model

Federico Galatolo A very informal introduction to Git 28 / 32



GitHub

GitHub is git server.

over 37 Million Users

over 100 Million Repositories

Largest source code host in the world

Home of millions of free and open source projects

Federico Galatolo A very informal introduction to Git 29 / 32



GitHub forks

In GitHub there is the concept of fork.
A fork is a clone of someone else’s repository into yours repositories.

A fork is not a git clone

After a fork you own an exact copy of a repository.
Copy of which you and only you are the administrator.

Federico Galatolo A very informal introduction to Git 30 / 32



GitHub Pull Requests

If you want to ask for the integration of your changes in the forked
repository you have to open a Pull Request.

In the pull request you have to specify the destination branch (original
repository) and the source branch (your repository)

Federico Galatolo A very informal introduction to Git 31 / 32



That’s all folks!

You can find the slides PDF as well as their LATEX source code on GitHub.

https://github.com/galatolofederico/git-very-informal-introduction

R federico.galatolo@ing.unipi.it

> @galatolo

� galatolo.me

� @galatolofederico

Federico Galatolo A very informal introduction to Git 32 / 32

https://galatolo.me

